The algorithmic complexity of mixed domination in graphs
نویسندگان
چکیده
A three-valued function f defined on the vertices of a graph G = ( V, E), f : V 4 {-I. 0. I }, is a minus dominating function if the sum of its function values over any closed neighborhood is at least one. That is, for every 1~ t V, ,f(N[o]) > 1, where N[c] consists of I: and every vertex adjacent to 1’. The weight of a minus dominating function is f(V) = c f(u), over all vertices L: t V. The minus domination number of a graph G, denoted y--(G). equals the minimum weight of a minus dominating function of G. The upper minus domination number of a graph G. denoted T-(G), equals the maximum weight of a minimal minus dominating function of G. In this paper we present a variety of algorithmic results. We show that the decision problem corresponding to the problem of computing y(respectively, r) is NP-complete even when restricted to bipartite graphs or chordal graphs. We also present a linear time algorithm for finding a minimum minus dominating function in an arbitrary tree.
منابع مشابه
Complexity and approximation ratio of semitotal domination in graphs
A set $S subseteq V(G)$ is a semitotal dominating set of a graph $G$ if it is a dominating set of $G$ andevery vertex in $S$ is within distance 2 of another vertex of $S$. Thesemitotal domination number $gamma_{t2}(G)$ is the minimumcardinality of a semitotal dominating set of $G$.We show that the semitotal domination problem isAPX-complete for bounded-degree graphs, and the semitotal dominatio...
متن کاملk-Efficient partitions of graphs
A set $S = {u_1,u_2, ldots, u_t}$ of vertices of $G$ is an efficientdominating set if every vertex of $G$ is dominated exactly once by thevertices of $S$. Letting $U_i$ denote the set of vertices dominated by $u_i$%, we note that ${U_1, U_2, ldots U_t}$ is a partition of the vertex setof $G$ and that each $U_i$ contains the vertex $u_i$ and all the vertices atdistance~1 from it in $G$. In this ...
متن کاملOn the algorithmic complexity of k-tuple total domination
For a fixed positive integer k, a k-tuple total dominating set of a graph G is a subset D ⊆ V (G) such that every vertex of G is adjacent to at least k vertices in D. The k-tuple total domination problem is to determine a minimum k-tuple total dominating set of G. This paper studies k-tuple total domination from an algorithmic point of view. In particular, we present a linear-time algorithm for...
متن کاملAlgorithmic Aspects of Upper Domination
In this paper we study combinatorial and algorithmic resp. complexity questions of upper domination, i.e., the maximum cardinality of a minimal dominating set in a graph. We give a full classification of the related maximisation and minimisation problems, as well as the related parameterised problems, on general graphs and on graphs of bounded degree, and we also study planar graphs.
متن کاملALGORITHMIC ASPECT OF k-TUPLE DOMINATION IN GRAPHS
In a graph G, a vertex is said to dominate itself and all of its neighbors. For a fixed positive integer k , the k-tuple domination problem is to find a minimum sized vertex subset such that every vertex in the graph is dominated by at least k vertices in this set. The present paper studies the k-tuple domination problem in graphs from an algorithmic point of view. In particular, we give a line...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 412 شماره
صفحات -
تاریخ انتشار 1996